Урок 24 Бесплатно Порядок выполнения действий

Изучая числовые и буквенные выражения, способы упрощения выражений, свойства арифметических операций, мы рассматривали в основном простые выражения, значение которых найти было несложно.

Сегодня на уроке мы будем рассматривать выражения, в которых содержатся сразу несколько арифметических операций и несколько пар скобок.

Выясним, в какой последовательности необходимо выполнять математические операции при нахождении значения выражения.

Узнаем, какие действия называют действиями первой и второй ступени, зачем нужны скобки.

Разберем множество различных примеров, которые позволят нам лучше усвоить данную тему.

Порядок выполнения действий

Любой человек каждый день решает множество различных задач: простых и сложных.

Многие из них решаются по определенным правилам- алгоритмам.

У меня есть дополнительная информация к этой части урока!

Закрыть

Алгоритм- это определенная последовательность действий.

Алгоритм задает не только совокупность действий, но и порядок их выполнения.

Например, алгоритмом можно считать инструкцию по эксплуатации какого-либо прибора, рецепт приготовления блюда в кулинарной книге, порядок действий при включении компьютера, порядок выполнения практической работы, расписание уроков, режим дня, правила дорожного движения и многое другое.

Приведем пример простейшей последовательности действий (алгоритма) из повседневной жизни.

Порядок действий (алгоритм) открывания замка ключом.

  1. Найти ключ.
  2. Вставить ключ в замочную скважину.
  3. Повернуть ключ вокруг своей оси.
  4. Вытащить ключ из замочной скважины.

Чтобы получить верный результат, необходимо соблюдать определенный порядок действий.

Если мы изменим порядок действий в рассмотренном алгоритме открывания замка ключом, то открыть его не получится.

На самом деле, не получится сначала вставить ключ в замочную скважину, а затем найти этот ключ, а если не вставить ключ в замочную скважину, то, конечно же, не удастся повернуть ключ и вытащить его.

С алгоритмами мы уже не раз встречались на наших уроках, решая задачи и уравнения, рассматривая различные правила и свойства, совершая вычисления в столбик и др.

Выясним зависит ли значение выражения от порядка выполнения арифметических операций, обязательно ли выполнять действия в определенном порядке.

Рассмотрим следующий пример:

Катя и Федя решали пример, в котором необходимо было найти сумму числа 24 и произведения чисел 8 и 2.

Катя записала пример: 24 + 8 ∙ 2 и принялась выполнять арифметические действия по порядку.

Первым делом она нашла сумму чисел 24 и 8.

Сложив 24 и 8, у нее получилось число 32.

24 + 8 = 32.

Затем полученный результат (число 32) она умножила на 2.

В итоге у нее получилось:

32 ∙ 2 = 64.

Ответ: 64.

Федя записал пример: 24 + 8 ∙ 2 и стал решать его иным способом.

Сначала он нашел произведение чисел 8 и 2.

Умножив 8 на 2, у него получилось число 16.

8 ∙ 2 = 16.

Затем к 24 прибавил полученное произведение.

В итоге получил следующее равенство:

16 + 24 = 40.

Ответ: 40.

Исходные выражения, которые записали Катя и Федя, были одинаковые (содержали определенную последовательность чисел и знаков).

Дети меняли только порядок следования математических операций.

В итоге получили различные значения одного и того же выражения.

Получается, что порядок выполнения арифметических действий влияет на результат вычислений.

Чуть позже мы выясним, кто же решил пример правильно: Катя или Федя.

Пройти тест
Закрыть тест

Пройти тест и получить оценку можно после входа или регистрации

Порядок выполнения действий в выражениях без скобок

Очень часто в математических выражения присутствует сразу несколько арифметических операций, таких как сложение, вычитание, умножение и деление.

Чтобы найти значение такого выражения, необходимо соблюдать порядок действий, который регламентируется определенными правилами.

Рассмотрим правила выполнения арифметических действий в выражениях без скобок.

1. Математическое выражение вычисляется по частям, математические операции выполняются по порядку слева направо (от начала к концу выражения).

2. Арифметические действия делят на действия первой ступени и действия второй ступени.

Сложение и вычитание- это действия первой ступени.

Умножение и деление- это действия второй ступени.

3. Если в выражении без скобок присутствуют действия только первой ступени (сложение и вычитание), то действия выполняются в порядке их следования (слева направо).

У меня есть дополнительная информация к этой части урока!

Закрыть

Рассмотрим пример.

Дано выражение 78 - 12 + 3 - 10.

Определим порядок действий в выражении и найдем его значение.

Данное выражение содержит действия только первой ступени (сложение и вычитание) и не содержит скобок, следовательно, необходимо выполнить действия по порядку их следования (слева направо).

Запись промежуточных вычислений (т.е. действий) можно оформить двумя способами.

  • Все действия можно оформить в виде равенств, записывая каждое под своим номером в столбик под исходным примером.

Выполнив последнее действие, ответ записывают в исходный пример.

В нашем случае решение будет выглядеть так:

  • Все вычисления можно записать в виде непрерывной «цепочки» действий, соединенных знаком равенства.

Для нашего примера решение будет выглядеть следующим образом:

4. Если в выражении без скобок присутствуют только действия второй ступени (умножение и деление), то данные действия выполняются в порядке их следования (слева направо).

Пример.

Дано выражение 15 ∙ 6 ÷ 3 ∙ 10.

Определим порядок действий в выражении и найдем его значение.

Данное выражение не содержит скобки, и в нем присутствуют только действия второй ступени (умножение и деление), следовательно, действия выполнять необходимо слева направо по порядку их следования.

5. Если в выражении отсутствуют скобки, и оно содержит действия первой и второй ступени, то сначала выполняются действия второй ступени (умножение и деление) в порядке их следования слева направо, затем выполняются действия первой ступени (сложения и вычитания) так же в порядке их следования слева направо.

Пример.

Определите порядок действий в выражении 137 - 17 ∙ 2 + 81 ÷ 3 и найдите его значение.

Данное выражение не содержит скобки, в нем присутствуют действия первой и второй ступени.

Следовательно, действия будем выполнять по порядку слева направо: сначала умножение и деление, а затем вычитание и сложение.

Вспомним пример, рассмотренный нами в начале урока, где Катя и Федя решали пример.

Решим этот пример сами, соблюдая порядок следования арифметических операций, и выясним, кто из ребят нашел правильный ответ.

Было дано выражение 24 8 ∙ 2.

В данном выражении присутствуют действия первой и второй ступени, соответственно, сначала мы должны выполнить умножение, затем полученный результат стожить.

Обозначим порядок действий в выражении и найдем его значение.

Пройти тест
Закрыть тест

Пройти тест и получить оценку можно после входа или регистрации

Порядок выполнения действий в выражениях со скобками

В математике есть специальный символ, который указывает нужный порядок действий в выражении, этот символ называется скобки.

У меня есть дополнительная информация к этой части урока!

Закрыть

Скобки чаще всего используют как парный знак.

В паре первая скобка называется открывающей, вторая- закрывающей.

Скобки заключают некоторую часть целого математического выражения.

В математике существует несколько видов скобок, которые имеют свой конкретный смысл.

Наиболее распространенными являются три вида скобок: круглые скобки (…), квадратные скобки […] и фигурные скобки {…}.

В математике область применения скобок различна.

Скобки часто используют в выражениях для указания порядка выполнения арифметических действий.

В качестве такого указателя в основном используют парные круглые скобки

1. Запомните правило!

Действия, записанные в скобках, выполняются в первую очередь.

На примере рассмотрим использование скобок для указания порядка действий или изменении этого порядка.

Пример.

Дано выражение 48 ÷ 8 - 4.

Найдем значение этого выражения, используя правило, которое определяет порядок выполнения действий в математических выражениях.

Так как скобок в данном примере нет, то первым действием выполняется деление, затем- вычитание.

В результате получим следующее равенство:

Ответ: 4.

Если выражение будет содержать все те же числа и математические операции, но будет записано в виде: 48 ÷(8 - 4),  то в первую очередь выполняется действие в скобках, а затем- деление.

В итоге получим следующий результат:

Ответ: 12.

Мы можем заметить, что, изменив порядок действий с помощью скобок, изменилось значение выражения.

2. Если в скобках присутствуют действия первой и второй ступени, то в скобках сохраняется известный нам порядок действий: слева направо выполняются сначала действия деления и вычитания, затем по порядку слева направо сложение и вычитание.

Рассмотрим пример.

Определим порядок действий в выражении 100 - (26 ÷ 2 + 27) + 52 и найдем его значение.

Это выражение содержит скобки, поэтому выполним сначала действия в них.

Внутри скобок присутствуют действия первой и второй ступени.

Следовательно, выполним деление, затем сложение, находящееся в скобках.

Так как оставшиеся за скобками действия- это действия первой ступени, то они выполняются по порядку слева направо.

3. Существуют выражения, которые содержат несколько пар скобок, указывающих порядок выполнения действий.

В таком случае выполняются действия последовательно по порядку слева направо: сначала в первой паре скобок, затем во второй паре, далее в третьей и т.д. (пока есть скобки), и только потом выполняются все остальные действия, которые находятся за скобками, согласно правилам, определяющим порядок выполнения математических действий в выражениях.

Рассмотрим данное правило на примере.

Определим порядок действий в выражении (8 + 14 ∙ 3) - 2 ∙ (4 - 1) и найдем его значение.

Это выражение содержит скобки, поэтому выполним сначала действия в них.

Первым делом выполним все действия в первой скобке, причем сначала найдем произведение чисел, а затем сложение.

После этого выполняется действие во второй скобке.

Далее все остальные действия по уже известным нам правилам.

4. Иногда возникает ситуация, когда в выражении встречаются сложное сочетание скобок- вложенные скобки (будто скобки с выражениями вложены друг в друга).

У меня есть дополнительная информация к этой части урока!

Закрыть

Существует несколько вариантов, чтобы отличить одну пару скобок от другой:

1) Скобки обозначают разными размерами (обычно внутренние скобки изображают меньшего размера).

2) Изображают каждую пару скобок одним цветом, для каждой пары скобок один цвет.

3) Дополнительно применяют другие виды скобок.

Так, если выражение в круглых скобках нужно заключить в скобки, то для этого можно использовать квадратные скобки, а если необходимо в скобки заключить выражение, которое содержит круглые и квадратные скобки, то в таком случае можно использовать фигурные скобки

Последовательность действий для такого выражения определяется следующим правилом:

Если скобки содержат внутренние скобки, то сначала выполняются действия в них, затем математические операции проводят, продвигаясь последовательно ко внешним скобкам.

В качестве примера определим порядок действий в выражении

1) Первым делом выполним действие, которое находится в круглых скобках.

200 + 100 = 300

В исходное выражение вместо выражения, стоящего в круглых скобках, запишем найденное его значение.

{[300 ∙ 5 - 300] - 10 ∙ 20} ÷ 20 - 10

Далее выполняем действия, находящиеся в квадратных скобках, соблюдая очередность действий первой и второй ступеней.

2) Найдем произведение 300 и 5.

300 ∙ 5 = 1500

3) Из полученного произведения вычтем 300.

1500 - 300 = 1200

Вместо выражения, которое находилось в квадратных скобках, запишем его значение.

{1200 - 10 ∙ 20} ÷ 20 - 10

Далее выполняем действия, находящиеся в фигурных скобках, соблюдая очередность действий первой и второй ступеней.

4) Найдем произведение 10 и 20.

10 ∙ 20 = 200

5) Полученный результат вычтем из 1200.

1200 - 200 = 1000

Подставим вместо выражения, стоящего в фигурных скобках, его значение.

1000 ÷ 20 - 10

В оставшейся части исходного выражения больше скобок нет, в нем присутствуют действия первой и второй ступени.

Следовательно, действия будем выполнять по порядку слева направо.

6) Сначала выполним деление:

1000 ÷ 20 = 50

7) Затем из полученного частного вычтем 10.

50 - 10 = 40

В результате получили ответ: число 40.

У меня есть дополнительная информация к этой части урока!

Закрыть

Порой, в выражениях скобки можно опустить, если при этом порядок действий не изменится.

Пример.

Дано выражение (24 + 14) - 4.

Найдем значение этого выражения, используя правило, которое определяет порядок выполнения действий в математических выражениях.

Так как в данном примере есть скобки, то первым действием выполним сложение чисел 24 и 14, затем из полученной суммы вычтем число 4, стоящее за скобкой:

Получаем в результате ответ: число 34.

Рассмотрим другую ситуацию: выражение будет содержать все те же числа и математические операции, но будет записано без скобок 24 + 14 - 4.

Данное выражение содержит действия только первой ступени (сложение и вычитание) и не содержит скобок, следовательно, необходимо выполнять действия по порядку их следования слева направо.

Сначала выполним сложение, а затем вычитание:

Получаем в результате ответ: число 34.

Заметим, что порядок действий в выражении со скобками (24 + 14) - 4 и без скобок 24 + 14 - 4 одинаковый, и значения этих двух выражений равны.

Следовательно, для нашего случая верно равенство: (24 + 14) - 4 = 24 + 14 - 4

Порядок действий в выражениях можно изменять с помощью основных свойств сложения, вычитания, умножения и деления.

Например, дано выражение 7 ∙ 2 ∙ 55.

В данном выражении удобнее использовать сочетательное свойство умножения, а не выполнять действия по порядку.

Сначала найдем произведение 2 и 55, и только потом полученное произведение умножим на 7.

7 ∙ 2 ∙ 55 = 2 ∙ 55 ∙ 7 = 110 ∙ 7 = 770.

Свойства арифметических операций часто используют для упрощения выражений.

Важно отметить, что установленный порядок действий в выражениях без скобок и со скобками справедлив как для числовых выражений, так и для буквенных.

Представим в общем виде порядок выполнения арифметических действий в виде схемы.

У меня есть дополнительная информация к этой части урока!

Закрыть

Каждое выражение вычисляется по определенной программе (алгоритму), которую задают правила выполнения арифметических действий.

Рассмотрим алгоритм вычисления выражения (30 + 20) ∙ (100 - 800 ÷ 10).

Записывая решение в виде равенств, оформляя каждое под своим номером в столбик, мы составляли алгоритм вычисления выражения такого вида:

1) 30 + 20 = 50

2) 800 ÷ 10 = 80

3) 100 - 80 = 20

4) 50 ∙ 20 = 1000

Эту же программу вычислений можно представить в виде схемы, выполняя действия в определенном порядке, заполняя при этом последовательно пустые ячейки.

В нижней ячейке записывается ответ.

Пройти тест
Закрыть тест

Пройти тест и получить оценку можно после входа или регистрации

Заключительный тест

Пройти тест