Урок 29 Бесплатно Модуль числа
Модуль числа (абсолютная величина)
В переводе с латинского «модуль» (modulus) означает мера, размер.
Считается, что данный термин впервые ввел в пользование английский философ и математик Роджер Котс, друг и ученик Исаака Ньютона.
Многие ученые использовали в своих научных трудах понятие модуль, однако символьное обозначение он приобрел только в конце XIX века.
В 1841 году выдающийся немецкий ученый Карл Теодор Вильгельм Вейерштрасс ввел символьное обозначение модуля числа, которое используют и применяют по сегодняшний день.
В некоторых случаях вместо «модуль числа» говорят: «абсолютная величина», но надо понимать, что это тождественно равные понятия.
Модуль - слово многозначное.
Понятие «модуль» используется во многих областях деятельности человека.
Например, в архитектуре и строительстве модуль - это исходная мера длины, размер одного из элементов (частей здания), т.е. предварительно заданная величина.
Можно сказать, что квартира- это модуль дома, а бетонный блок- модуль здания.
Применение модуля придает строениям, сооружениям и их отдельным частям соизмеримость, единообразную форму, координацию размеров частей здания и комплекса в целом; облегчает установление норм и правил по строительству.
В космонавтике модуль- это автономная управляемая часть космического корабля (например, стыковочный модуль, орбитальный модуль и т.п.).
В радиоэлектронике модуль- это автоматизированный блок, функционально законченный узел радиоэлектронной аппаратуры.
В точных науках и технике модуль служит для названия некоторых коэффициентов и величин (например, модуль упругости, модуль сдвига, модуль сопротивления и другое).
В издательском деле модуль- это шаг сетки, основа расположения полос и разворотов в модульной системе верстки.
В судостроении все более широкое применение находит модульное строение судов и плавучих сооружений.
Блоки секций или блоки судна- типовые повторяющие блоки, так называемые модули, составляют корпус судна.
В программировании модули- это законченные самостоятельные фрагменты программы. Разделение программы на небольшие части- модули, позволяют облегчить программу, так как модуль можно применять повторно, его легче отладить и написать, повышает качество программного кода.
В общем говоря, под модулем часто понимают и представляют исходную единицу измерения, составную часть, служащую мерилом, или самостоятельную часть некоторой системы, часть конструкции
В математике модуль имеет несколько значений. Разберем, что в математике называют модулем числа (абсолютной величиной).
Рассмотрим понятие модуль с геометрической точки зрения.
Вам уже известно, что на координатной прямой мы отмечаем действительные числа, а каждому действительному числу на этой прямой соответствует определенная точка и наоборот, каждой точке на координатной прямой соответствует действительное число.
Точка задается некоторым расстоянием от начала координат.
Длина отрезка от начала координат до точки вмещает в себя определенное количество единичных отрезков координатной прямой.
Длина такого отрезка всегда неотрицательная величина.
Рассмотрим пример:
Два мяча катнули по одной прямой. Первый мяч откатился вправо от исходной точки на 4 м, второй мяч влево от исходной точки на 6 м.
Изобразим координатную прямую и отметим на ней координаты точек остановки этих двух мячей.
Точка О- это исходная точка мячей- точка начала отсчета.
Единичный отрезок координатной прямой равен 1 деление- 1 метр.
Вправо откладываем координату первого мяча А (+4)
Влево откладываем координату второго мяча В (-6)
Расстояние от точки А до начала отсчета 4 единичных отрезка.
Длина ОА = 4 единичных отрезка.
Расстояние от точки В до начала отсчета 6 единичных отрезков.
Длина ОВ = 6 единичных отрезков.
Расстояние ОА и ОВ называют абсолютной величиной, модулем числа, они всегда положительны.
Таким образом, модулем числа называют расстояние на координатной прямой от начала отсчета до заданной точки (выраженной в единичных отрезках).
Обозначается модуль двумя вертикальными чертами слева и справа от числа | |.
Запись |A| читается как «Модуль А» или «Модуль числа А».
Пример 1
|7|- модуль числа 7
Изобразим координатную прямую, отметим на ней точку с координатой 7
Зная определение модуля числа, мы можем утверждать, что |7| - это расстояние от точки с координатой 7 до точки начала отсчета О, что составляет 7 единичных отрезков.
Значит, модуль числа 7 равен самому числу 7
|7| = 7
Пример 2
|-5| - модуль числа (-5)
Изобразим координатную прямую, отметим на ней точку с координатой (-5).
Зная определение модуля числа, мы можем утверждать, что от точки с координатой (-5) до точки начала отсчета О помещается 5 единичных отрезков.
5 единичных отрезков - это и есть расстояние от точки с координатой (-5) до точки начала отсчета (модуль числа).
Значит, модуль числа (-5) равен 5
|-5| = 5
Пример 3
|-1|- модуль числа (-1)
В расстояние от точки с координатой (-1) до точки начала отсчета помещается только один единичный отрезок этой прямой, поэтому модуль (-1) равен 1.
|-1| = 1
Свойства модуля (абсолютной величины)
Рассмотрим некоторые свойства модуля числа.
1. Модуль нуля равен нулю
Так как от нуля до начала отсчета нет никакого расстояния (0 единичных отрезков), модуль нуля и есть нуль.
|0| = 0
2. Модуль числа всегда число неотрицательное (т.е. положительное или нуль)
Модуль положителен, так как по определению модуль - это расстояние, а расстояние всегда является положительным числом.
Приведем пример:
Мяч катнули вдоль прямой на расстояние, равное 3 м вправо, мяч ударился о стену и покатился вдоль прямой в обратном направлении на 3 м и остановился.
Изобразим на координатной прямой координаты точек в момент каждой остановки мяча.
Точка О на координатной прямой- это точка откуда катнули мяч- точка начала отсчета.
Единичный отрезок координатной прямой равен 1 деление- 1метр.
Точка А с координатой А (+3) - момент удара мяча о стенку.
Точка В с координатой В (0) - совпадает с точкой отсчета.
Можно ли утверждать, что мяч не преодолевал никакого расстояния, оставаясь в исходной точке в состоянии покоя, ведь в конечном счете мяч оказался в точке 0 м (от точки ноль до начала отсчета О не помещается ни одного единичного отрезка)? Конечно же, нет!
Путь мяча был бы равен нулю, если бы его вообще никуда не пинали, и он оставался в состоянии покоя в точке О.
Но мы должны понимать, что путь (расстояние), которое преодолел мяч, состоит из 3 единичных отрезков в правую сторону и 3 единичных отрезков в левую сторону; сложив все единичные отрезки, получим:
3 единичных отрезка + 3 единичных отрезка = 6 единичных отрезков
6 единичных отрезков = 6 м
Для определения пути мы складывали только числовое значение без учета направления. Это числовое значение и есть модуль числа.
Таким образом, можно сказать, что любое число состоит из знака и абсолютного значения (модуля).
Поэтому, чтобы найти модуль числа, нужно записать это число без учета знака.
В математике для лучшего восприятия темы «Модуль числа» придумали шуточную ассоциацию.
Представляют, что модуль- это баня, а знак «минус» - это грязь.
Заходя в баню (оказываясь под знаком модуль), отрицательное число моется, освобождается от знака. Из бани (из под знака модуль) число выходит «чистым»- без знака «минус».
В такой бане могут «мыться» положительные, отрицательные числа и ноль.
3. Модули противоположных чисел равны
Рассмотрим на примере данное утверждение:
Пусть модуль х равен 4, получим равенство |x| = 4
Отметим на координатной прямой точки, которые удовлетворяют этому равенству:
Точка О - начало отсчета координатной прямой х.
Модул ь- это расстояние от начала отсчета до точки в единичных отрезках, равное в данном случае четырем.
Откладываем 4 единичных отрезка вправо, получаем точку с координатой 4
Но такое же количество единичных отрезков можно отложить влево, тогда получим точку с координатой (-4)
Получим на координатной прямой две точки, которые удовлетворяют условию |x| = 4
В данном примере значение х может быть равным:
х = 4
х = -4
Числа 4 и -4 отличаются только знаками, поэтому смело можем сказать, что это противоположные числа.
На координатной прямой противоположные числа, хоть и по разные стороны от точки начала отсчета, но находятся на равных расстояниях от этой точки, т.е. по модулю равны.
4. Модуль произведения двух чисел равен произведению модулей этих чисел
В буквенном выражении это можно записать так:
\(\mathbf{|a \cdot b| = |a| \cdot |b|}\)
Пример: \(\mathbf{|5 \cdot 6| = |5| \cdot |6| = 5 \cdot 6 = 30}\)
5. Квадрат модуля числа равен квадрату этого числа
\(\mathbf{|a|^2 = a^2 }\)
Пример:
\(\mathbf{|10|^2 = 10^2 = 100 }\)
\(\mathbf{|-2|^2 = 2^2 = 4}\)
6. Модуль частного двух чисел равен частному их модулей
\(\mathbf{\Bigl| \frac{x}{y}\Bigr| = \frac{|x|}{|y|} , y \neq 0}\)(так как на нуль делить нельзя).
Пример:
\(\mathbf{\Bigl| \frac{8}{2}\Bigr| = \frac{|8|}{|2|}= \frac{8}{2} = 4 }\)
\(\mathbf{\Bigl| -\frac{8}{2}\Bigr| = \frac{|-8|}{|2|}= \frac{8}{2} = 4 }\)
Решение задач с применением модуля числа
Рассмотрим несколько примеров таких задач.
Задача 1
Запишите все числа, имеющие модуль 142.
Решение:
Представим координатную прямую с началом отсчета в точке О
Нам известно, что модуль числа - это расстояние (количество единичных отрезков) от нуля до какой-либо точки.
142 единичных отрезка мы можем отложить на координатной прямой вправо и получим точку с координатой 142.
Также 142 единичных отрезка мы можем отложить влево от нуля, в этом случае получаем точку с координатой 142.
На координатной прямой находятся два числа, которые имеют модуль 142, а расстояние до этих точек содержат по 142 единичных отрезка.
|142| = 142
|-142| = 142
Ответ: числа 142 и -142 имеют модуль 142
Задача 2
Расположите числа -15; -1; 4; 7 в порядке возрастания модулей.
Решение:
Надо понимать, что в порядке возрастания будем располагать не сами числа -15; -1; 4; 7, а их модули.
Для этого найдем модули каждого из них:
|-15| = 15
|-1| = 1
|4| = 4
|7| = 7
Модули чисел получились: 15, 1, 4, 7
Расположим эти числа в порядке возрастания (от самого маленького к самому большому):
1, 4, 7, 15.
Получаем такую последовательность равенств,
|-1| = 1
|4| = 4
|7| = 7
|-15| = 15
Следовательно, числа в порядке возрастания их модулей должны располагаться так: -1, 4, 7, -15
Ответ: -1, 4, 7, -15
Задача 3
На координатной прямой отметили две точки -73 и 68. Модуль какого числа больше?
Решение:
Представим, что на координатной прямой на определенном расстоянии от точки О (налала отсчета) отмечены две точки.
Слева от точки начала отсчета расположена точка с координатой -73
Справа от точки начала отсчета расположена точка с координатой 68
Нам известно, что модуль - это расстояние от заданной точки до точки начала отсчета, выраженное в единичных отрезках.
Расстояние от точки О до точки с координатой -73 содержит больше единичных отрезков, чем расстояние от точки О до точки с координатой 68 (т.е. координата точки -73 находится дальше от начала координат, чем точка с координатой 68).
Значит, модуль числа -73 больше модуля числа 68
|-73| = 73
|68| = 68
73 > 68, а это значит:
|-73| > |68|
Ответ: |-73| > |68|
Задача 4
На координатной прямой точка А отмечена левее точки начала отсчета на 2 единицы и точка В - правее от точки начала отсчета на 6 единиц.
Чему равны координаты этих точек?
Чему равен модуль каждой координаты?
Решение:
Построим координатную прямую, за начала отсчета примем точку О
Единичный отрезок равен 1 деление- 1 единица.
На координатной прямой отметим точки А и В
Точка А имеет координату A (-2), так как она отодвинута влево от точки О на расстояние в два единичных отрезка.
Точка В имеет координату В (6), так как она отодвинута вправо от точки О на расстояние в шесть единичных отрезков.
Получили точки с координатами A (-2) и В (6)
Модуль-это расстояние в единичных отрезках от заданной точки до начала отсчета.
Таким образом:
Модуль -2 равен 2
|-2| = 2
Модуль 6 равен 6
|6| = 6
Ответ: Модули координат точек A (-2) и В (6) равны 2 и 6 соответственно.
Наверное, вы уже заметили, что значение координат может быть положительным и отрицательным, а модули только положительными.