Урок 20 Получить доступ за 75 баллов Дробные выражения

В этом уроке мы познакомимся с понятием дробных выражений и с тем, как их считать. Узнаем интересные способы работы с дробями, в числителе или знаменателе которых стоят дроби.

Дробные выражения

Для начала определимся с определением дробного выражения.

Дробным выражением называется частное двух выражений или чисел, знак деления в котором обозначается чертой.

 

Пример:

$$\mathbf{\frac{1}{2}}$$

Мы привыкли называть такое выражение обыкновенной дробью. Она ничем не противоречит определению дробного выражения. Поэтому если вас спросят: "Является ли обыкновенная дробь дробным выражением?", то можно смело ответить: "Да, является!"

$$\mathbf{\frac{1+2}{3+4}}$$

 

$$\mathbf{\frac{5\cdot(1+2)}{(3+5)\div2}}$$

Мы не накладываем никаких ограничений на то, что из себя представляют выражения; нужно только то, чтобы это было деление, записанное как дробь.

Также никто не запрещает записать в одну или даже в обе части выражения, содержащие дроби.

 

Примеры:

$$\mathbf{\frac{1}{1+\frac{1}{8}}}$$

$$\mathbf{\frac{3+12\frac{1}{2}}{7\frac{1}{3}-2\frac{3}{4}}}$$

$$\mathbf{\frac{(\frac{1}{2}+\frac{1}{4})\cdot\frac{2}{3}}{\frac{2}{7}\cdot(\frac{3}{8}-\frac{1}{4})}}$$

Можем пойти дальше и записать так называемую многоэтажную дробь. Это дробь, в числителе или в знаменателе (а иногда и в числителе и в знаменателе) которой стоят дробные выражения.

 

Примеры:

$$\mathbf{\frac{\frac{1}{2}}{3}}$$

$$\mathbf{\frac{1}{\frac{12}{19}}}$$

$$\mathbf{\frac{\frac{12}{89}}{\frac{74}{99}}}$$

Помимо определения дробного выражения необходимо знать определения числителя и знаменателя дробного выражения.

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Adipisci autem beatae consectetur corporis dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore voluptate!

Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla?

Эта информация доступна зарегистрированным пользователям

Если мы считаем дробное выражение делением, то числителем будет являться делимое, а знаменателем делитель.

Например, существует следующее дробное выражение:

$$\mathbf{\frac{3+10\cdot2}{2+\frac{1}{2}}}$$

В данном случае \(\mathbf{3+10\cdot2}\) будет являться числителем, а \(\mathbf{2+\frac{1}{2}}\)- знаменателем.

Также можно преобразовывать обычные выражения в дробные.

Это можно делать при условии, что выражение представляет из себя частное двух выражений или чисел, но пока что записанное через обычный знак деления.

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Adipisci autem beatae consectetur corporis dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore voluptate!

Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla?

Эта информация доступна зарегистрированным пользователям

Примеры преобразования обычного выражения в дробное:

\(\mathbf{(3+4)\div(200+123)=\frac{3+4}{200+123}}\)

\(\mathbf{(1247+523\cdot(54+78))\div((345+67)\cdot56\cdot87\cdot(63+85))=}\)

\(\mathbf{=\frac{1247+523\cdot(54+78)}{(345+67)\cdot56\cdot87\cdot(63+85)}}\)

\(\mathbf{(4+\frac{1}{2})\div(\frac{3}{5}\cdot8+2)=\frac{4+\frac{1}{2}}{\frac{3}{5}\cdot8+2}}\)

\(\mathbf{(452+789\cdot(\frac{7}{9}+\frac{1}{2}))\div(\frac{4}{741}+582\cdot741)=}\)

\(\mathbf{=\frac{452+789\cdot(\frac{7}{9}+\frac{1}{2})}{\frac{4}{741}+582\cdot741}}\)

 

Сформулируем правило: для того, чтобы преобразовать выражение, представляющее из себя частное двух выражений или чисел, необходимо делимое поместить в числитель дробного выражения, а делитель- в знаменатель.

Теперь вы видите, насколько большой класс формул покрывается понятием дробного выражения.

Давайте пройдем небольшой тест и перейдем к изучению того, как вычислять значения дробных выражений.

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Adipisci autem beatae consectetur corporis dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore voluptate!

Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla?

Эта информация доступна зарегистрированным пользователям

Вычисление дробных выражений

Начнем с самого простого способа вычисления значений дробных выражений.

Он заключается в том, чтобы отдельно посчитать значения числителя и знаменателя и получить дробное выражение, в знаменателе и числителе которого стоят числа.

Далее надо смотреть, что получилось:

  • может получиться правильная дробь, тогда это будет готовым ответом
  • может получиться дробь неправильная, тогда необходимо выделить целую часть
  • в числителе и знаменателе дробного выражения могут получиться дробные числа; в таком случае нужно поделить числитель на знаменатель, это и будет ответом

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Adipisci autem beatae consectetur corporis dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore voluptate!

Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla?

Эта информация доступна зарегистрированным пользователям

Пример 1

Вычислим значение выражения \(\mathbf{\frac{1+2\cdot4}{5-2}}\)

Решение:

Для начала вычислим значения числителя и знаменателя:

\(\mathbf{\frac{1+2\cdot4}{5-2}=\frac{1+8}{3}=\frac{9}{3}}\)

В данном примере числитель делится на знаменатель, поэтому из дроби получится натуральное число.

\(\mathbf{\frac{9}{3}=3}\)

 

Пример 2

Вычислим значение выражения \(\mathbf{\frac{7+2\cdot3\cdot2}{2\cdot9}}\)

Решение:

Сначала вычислим числитель и знаменатель:

\(\mathbf{\frac{7+2\cdot3\cdot2}{2\cdot9}=\frac{7+12}{18}=\frac{19}{18}}\)

В данном случае получилась неправильная дробь, выделим целую ее часть, чтобы получить в ответе смешанное число:

\(\mathbf{\frac{19}{18}=\frac{19}{18}=1\frac{1}{18}}\)

 

Пока что были рассмотрены случаи, в которых выражения в числителе и знаменателе представляли из себя арифметические действия над натуральными числами. Но вас нисколько не должны смущать случаи, в которых выражения содержат в себе дроби как обыкновенные, так и десятичные.

 

Пример: 

\(\mathbf{\frac{3+\frac{3}{4}}{1.2+0.3}}\)

Решение:

Наверное, вы уже догадываетесь, что мы сделаем дальше. Правильно! Вычислим числитель и знаменатель:

\(\mathbf{\frac{3+\frac{3}{4}}{1.2+0.3}=\frac{\frac{3\cdot4+3}{4}}{1.5}=}\)

\(\mathbf{=\frac{\frac{12+3}{4}}{1.5}=\frac{\frac{15}{4}}{1.5}}\)

В данном случае мы получили неправильную дробь в числителе и десятичную дробь в знаменателе.

Чтобы получить окончательный результат разделим одно на другое:

\(\mathbf{\frac{\frac{15}{4}}{1.5}=\frac{15}{4}\div1.5=\frac{15}{4}\div\frac{15}{10}=}\)

\(\mathbf{=\frac{15}{4}\cdot\frac{10}{15}=\frac{15\cdot10}{4\cdot15}=\frac{10}{4}=\frac{5}{2}=2\frac{1}{2}}\)

 

Прежде чем перейти к дополнительным приемам работы с дробными выражениями, решим небольшой тест для закрепления навыка вычисления дробных выражений.

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Adipisci autem beatae consectetur corporis dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore voluptate!

Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla?

Эта информация доступна зарегистрированным пользователям

Приемы для работы с дробными выражениями

Пока что во всех предыдущих случаях мы находили значения дробных выражений «в лоб», по достаточно простому алгоритму.

Но, как это часто бывает в математике, в некоторых случаях можно упростить себе подсчеты, вовремя заметив определенные вещи.

Вы уже наверняка хорошо освоили сокращение дробей.

Напомним, в чем его суть: если числитель представляет из себя произведение, и знаменатель также является произведением, и в этих произведениях есть одинаковый множитель, то мы можем сократить дробь на этот множитель.

Как же это относится к дробным выражениям?

Дело в том, что в некоторых случаях числитель и знаменатель могут быть произведениями или же могут стать произведениями в процессе подсчетов.

Тогда почему бы не сокращать их по возможности?!

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Adipisci autem beatae consectetur corporis dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore voluptate!

Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla?

Эта информация доступна зарегистрированным пользователям

Пример:

\(\mathbf{\frac{7\cdot(123+4)}{3\cdot(120+7)}}\)

Начнем считать выражение и посмотрим, что получается.

\(\mathbf{\frac{7\cdot(123+4)}{3\cdot(120+7)}=\frac{7\cdot127}{3\cdot127}}\)

Числитель и знаменатель дробного выражения после первых преобразований превратились в произведения.

Также можно заметить, что в этих произведениях есть общий множитель: 127

Тогда мы можем поделить числитель и знаменатель дробного выражения на это число, тем самым значительно упростив выражение.

\(\mathbf{\frac{7\cdot127}{3\cdot127}=\frac{7}{3}=2\frac{1}{3}}\)

Это и будет значением этого выражения.

 

Также мы можем быть еще более хитрыми и внимательными.

Найдем значение выражения \(\mathbf{\frac{2\cdot(478569-145236)}{(478569-145236)\cdot3}}\)

Конечно же, можно начать вычислять сначала числитель, потом знаменатель. Для этого мы будем вычислять разность шестизначных чисел.

Но можно сделать проще: заметим, что числитель и знаменатель являются произведениями.

Числитель является произведением 2-х и выражения (478569-145236)

Знаменатель же является произведением выражения (478569-145236) и 3-х.

Выражение (478569-145236) является множителем и можно утверждать, что это один и тот же множитель в числителе и в знаменателе.

Значит, мы можем уверенно сокращать дробное выражение на это выражение.

\(\mathbf{\frac{2\cdot(478569-145236)}{(478569-145236)\cdot3}=\frac{2}{3}}\)

В данном случае мы сразу получили правильную дробь, это и будет являться значением выражения.

 

Отдельно стоит упомянуть работу с многоэтажными дробями.

Мы всегда можем идти по алгоритму с последовательным вычислением числителя и знаменателя - это гарантированно дает результат.

Но также можно запомнить два правила, которые существенно экономят время.

Первое правило говорит о том, что, если в числителе дробного выражения находится дробь (или же дробное выражение), мы можем домножить дробное выражение на знаменатель дроби (или дробного выражения), стоящей в числителе, тем самым уменьшив «этажность» дробного выражения.

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Adipisci autem beatae consectetur corporis dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore voluptate!

Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla?

Эта информация доступна зарегистрированным пользователям

Парочка примеров:

\(\mathbf{\frac{\frac{2}{3}}{4}=\frac{\frac{2}{3}\cdot3}{4\cdot3}=\frac{2}{12}=\frac{1}{6}}\)

\(\mathbf{\frac{\frac{3}{7+13}}{5}=\frac{\frac{3}{7+13}\cdot(7+13)}{5\cdot(7+13)}=}\)

\(\mathbf{=\frac{3}{5\cdot20}=\frac{3}{100}=0.03}\)

 

Второе правило рассматривает случай, когда дробь (или дробное выражение) находится в знаменателе дробного выражения.

В таком случае уменьшить «этажность» дробного выражения поможет домножение всего дробного выражения на знаменатель дроби (или дробного выражения), стоящей в знаменателе.

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Adipisci autem beatae consectetur corporis dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore voluptate!

Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla?

Эта информация доступна зарегистрированным пользователям

И парочка примеров на этот случай:

\(\mathbf{\frac{3}{\frac{2}{7}}=\frac{3\cdot7}{\frac{2}{7}\cdot7}=\frac{21}{2}=10\frac{1}{2}}\)

\(\mathbf{\frac{11}{\frac{3}{1+7}}=\frac{11\cdot(1+7)}{\frac{3}{1+7}\cdot(1+7)}=}\)

\(\mathbf{=\frac{11\cdot(1+7)}{3}=\frac{11\cdot8}{3}=\frac{88}{3}=29\frac{1}{3}}\)

 

И в завершение еще дам такой пример:

\(\mathbf{\frac{\frac{3}{4+1}}{\frac{7-2}{4}}=\frac{\frac{3}{5}}{\frac{5}{4}}=}\)

\(\mathbf{=\frac{\frac{3}{5}\cdot5}{\frac{5}{4}\cdot5}=\frac{3}{\frac{25}{4}}=\frac{3\cdot4}{\frac{25}{4}\cdot4}=\frac{12}{25}}\)

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Adipisci autem beatae consectetur corporis dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore voluptate!

Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla?

Эта информация доступна зарегистрированным пользователям

Интересная информация

Десять интересных математических фактов:

1. Известные всем знаки сложения и вычитания впервые были использованы только около 500 лет назад

2. 2 и 5- единственные простые числа, которые оканчиваются на 2 или 5

3. Несмотря на то, что сохранилось много трудов древнегреческого ученого Евклида, о его биографии почти ничего не известно

4. В римской системе счисления не существует нуля

5. Знак равенства «=» появился только в XVI веке

6. Слово «миг» обозначает не только короткое мгновение, но и вполне конкретный временной промежуток: 0,01 секунды

7. У древних египтян отсутствовала таблицы умножения и прочие математические правила

8. В свое время заниматься математикой в высоких кругах было настолько популярно, что даже Наполеон Бонапарт оставил после себя научные труды

9. Самые древние математические записи были найдены написанными на костях

10. Ученый Муавр с помощью математики смог рассчитать дату своей смерти

В бесплатной версии урока недоступны:

  • Видео
  • Изображения
  • Дополнительная информация
  • Таблицы
  • Тесты
Получить доступ