Урок 7 Получить доступ за 75 баллов Координатный луч
В прошлых уроках Вы узнали, что такое натуральные числа - это числа, используемые при счете предметов.
Также мы успели поговорить про шкалы - линии с отмеченными на них величинами, которые помогают нам определить ту или иную величину.
Сегодня мы рассмотрим в некотором смысле “шкалу” для натуральных чисел - координатный луч, узнаем, что скрывается за этим определением.
Ответим на вопрос, почему луч подходит больше всего для обозначения натуральных чисел, а также научимся определять с помощью него длины отрезков.
Определение
Луч- это часть прямой ограниченная с одной стороны точкой, называемой началом луча.
Начертим луч с началом в точке О так, чтобы он шел слева направо, и отметим на нем точку А не очень далеко от начала.
Отрезок ОА назовем единичным отрезком.
Далее отложим от точки А следующий отрезок АВ, равный отрезку ОА.
Затем отложим от точки В отрезок ВС, также равный единичному отрезку.
Продолжим процесс, уже не называя точки.
Теперь напишем над точкой O число 0, над точкой А число 1, над точкой В число 2, над С - 3 и так далее.
Так мы получили шкалу, которую называют координатным лучом.
В самом деле, для шкалы нам необходимы были такие объекты, как штрих, деление, цена деления, посмотрим, чем они представлены в данном случае.
В роли штрихов выступают точки.
Изображая координатный луч, можно точки обозначать как небольшие штрихи, это ничуть не делает рисунок менее точным.
Делением в данном случае является отрезок между любыми соседними точками.
Этот отрезок всегда равен единичному по построению, ведь мы всегда откладывали отрезок, равный единичному.
Ценой деления в данном случае является единица.
Может быть немного непривычно, что единица идет без наименования, ведь на других шкалах обычно цена деления 1 кг, 1 см, 1 км/ч.
Но здесь идет измерение натуральных чисел, поэтому просто единица.
Так что координатный луч вполне можно считать шкалой.
Если же говорить про более конкретное определение, то вот оно.
Координатный луч - луч с указанным для него единичным отрезком.
Нередко к этому определению добавляют помимо единичного отрезка еще два объекта: точку начала отсчета и направление увеличения чисел.
В сущности они не обязательны, ведь на луче уже есть точка - точка начала луча.
А на координатном луче точка начала отсчета и точка начала луча всегда совпадают.
Направление задавать тоже нет необходимости, ведь у луча только одно вполне определенное направление: от начала.
Единичный отрезок же необходим, ведь без него не будет одинакового расстояния между соседними точками и смысла в луче не будет.
Отметим важный момент: в одном координатном луче всегда один единичный отрезок.
Координаты
Мы уже поговорили про координатный луч, но важно понять, почему он “координатный” и как определены координаты в данном случае.
Обычно можно услышать слово “координаты” в географическом контексте.
Когда мы узнаем координаты, а это два числа, то можем однозначно сказать, про какую точку на карте идет речь.
Другими словами, в географическом смысле, координаты являются числами, определяющими положение точки на карте.
В случае с координатным лучом все даже проще.
Ведь если карта - двумерный объект, то есть, если перед нами лежит карта, нам нужно одно число, чтобы определить, как высоко расположена точка, а второе число, чтобы определить насколько она смещена вправо или влево, то на луче точка может быть лишь дальше или ближе от его начала.
Координата точки на координатном луче соответствует количеству единичных отрезков между этой точкой и точкой начала отсчета.
Посмотрим еще раз на рисунок из прошлой главы:
Точка А находится на расстоянии одного единичного отрезка от точки начала отсчета.
Точке А соответствует число 1
Точка В находится на расстоянии двух единичных отрезков от точки начала отсчета.
И точке В соответствует число 2
Аналогично каждой следующей точке соответствует число на единицу больше.
Число, соответствующее точке на координатном луче, называют координатой этой точки.
Заметим теперь, как соответствуют друг другу натуральный ряд и координатный луч.
За исключением точки начала отсчета, каждой точке соответствует натуральное число.
Если смотреть от начала отсчета, то координата следующей точки после данной равна следующему натуральному числу после координаты данной точки.
На том же самом рисунке мы видим, что следующее число за координатой точка В (2) , за точкой В идет точка С и координата точки С (3)
Допустим мы знаем, что точки P и Q - соседние, причем Q находится дальше от точки начала отсчета, чем P.
И также мы знаем, что координата точки P равняется 276
Тогда мы сможем сказать координату точки Q, это будет следующее натуральное число после числа 276, то есть ответ: 277
Аналогичная логика работает и в другую сторону.
Координата точки, идущей перед данной, является предыдущим натуральным числом по отношению к координате данной точки.
Так, если координата точки В - это 2, то координата точки А будет числом, на единицу меньшим, чем 2, то есть единицей.
Допустим, точки E и R соседние.
Также известно, что R находится дальше от точки начала отсчета, чем Е; а также известна координата точки R, она равна 315
Чтобы найти координату точки Е достаточно взять предыдущее натуральное число от числа 315, это будет число 314
Эти примеры показывают, как натуральный ряд ложится на координатный луч.
Отметим, что именно луч идеально соответствует натуральным числам, ведь и луч, и натуральный ряд ограничены с одной стороны (с начала), но продолжаются бесконечно.
Если же нам надо найти координату точки безотносительно соседних точек, то достаточно отсчитать количество единичных отрезков между данной точкой и точкой начала отсчета.
Найдем координату точки Н.
Между ей и точкой О (началом отсчета) 4 единичных отрезка, значит, координата точки Н равна 4
Длина отрезка на координатном луче
Только что в тесте было задание, в котором было необходимо найти разность координат двух точек.
Возможно, вы заметили некоторую закономерность, но если нет, сейчас разберем.
Посмотрим на разность координат точек D и C
Мы можем посчитать их координаты. В данном случае они сразу указаны, надо просто вычесть из большей меньшую.
Получится, что разность координат равна единице.
Также заметим, что между точками C и D один единичный отрезок.
Если рассмотрим разность координат точек D и В, то увидим, что разность координат равна 2, а также то, что между ними 2 единичных отрезка.
Правило: чтобы посчитать разность координат двух точек на координатном луче, достаточно посчитать, сколько между ними единичных отрезков.
Данное правило удобно, когда изначально координаты точек неизвестны, но при этом легко посчитать, сколько между ними единичных отрезков.
Теперь поговорим про измерение отрезков.
Допустим, требуется найти длину отрезка AD
Мы можем просто сосчитать количество единичных отрезков между точками А и D
Получится 3 отрезка, следовательно, длина равна 3.
Но можно сделать проще.
Правило: чтобы найти длину отрезка на координатном луче необходимо из координаты точки, дальней от точки начала отсчета, надо вычесть координаты ближней точки.
В случае с отрезком AD необходимо вычесть из координаты точки D (4) координату точки А (1)
Таким образом, длина отрезка AD равна (\(\mathbf{4-1=3}\))
Дополнительная информация
Интересно, что с математикой можно столкнуться не только в учебниках, но и в художественной литературе и даже в кинематографе.
Привычно видеть в роли главного героя в фильме какого-либо сильного человека, спортсмена, политика.
Но иногда главным харизматичным героем может быть математик, ученый.
Расскажу про одну достаточно интересную картину, повествующую о нестандартно мыслящемем математике.
А именно про “Человека, который изменил все”.
Данный фильм рассказывает про то, как менеджер одного из беднейших в американской лиге бейсбольных клубов “Окленд Атлетикс” нанимает к себе, казалось бы, далекого от спорта человека, похожего на типичного “ботаника”.
Этот человек оказывается выпускником экономического факультета, который решает отбирать игроков в клуб используя методы статистического анализа.
И здесь очень интересна концепция: нередко тот или иной клуб тратит большие деньги, чтобы нанять к себе успешного игрока.
Правда, после того как деньги потрачены, за новый клуб игрок может выступать уже не так хорошо.
Суть статистики заключалась в том, чтобы посмотреть данные множества игроков и начать выявлять таланты, которые еще не успели себя проявить.
Таким образом, клуб нанимает к себе игроков, которые в будущем становятся успешными, да еще и за не очень большие деньги.
Со статистикой можно даже идти дальше и просчитывать не только успехи отдельных игроков, но и всей команды в целом.
Так что данный фильм интересен той концепцией, которую он несет в массы.
Читайте также
В бесплатной версии урока недоступны:
- Видео
- Изображения
- Дополнительная информация
- Таблицы
- Тесты